Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3.

نویسندگان

  • C N Pace
  • E J Hebert
  • K L Shaw
  • D Schell
  • V Both
  • D Krajcikova
  • J Sevcik
  • K S Wilson
  • Z Dauter
  • R W Hartley
  • G R Grimsley
چکیده

Ribonucleases Sa, Sa2, and Sa3 are three small, extracellular enzymes produced by different strains of Streptomyces aureofaciens with amino acid sequences that are 50% identical. We have studied the unfolding of these enzymes by heat and urea to determine the conformational stability and its dependence on temperature, pH, NaCl, and the disulfide bond. All three of the Sa ribonucleases unfold reversibly by a two-state mechanism with melting temperatures, Tm, at pH 7 of 48.4 degrees C (Sa), 41.1 degrees C (Sa2), and 47.2 degrees C (Sa3). The Tm values are increased in the presence of 0.5 M NaCl by 4.0 deg. C (Sa), 0.1 deg. C (Sa2), and 7.2 deg. C (Sa3). The Tm values are decreased by 20.0 deg. C (Sa), 31.5 deg. C (Sa2), and 27.0 deg. C (Sa3) when the single disulfide bond in the molecules is reduced. We compare these results with similar studies on two other members of the microbial ribonuclease family, RNase T1 and RNase Ba (barnase), and with a member of the mammalian ribonuclease family, RNase A. At pH 7 and 25 degrees C, the conformational stabilities of the ribonucleases are (kcal/mol): 2.9 (Sa2), 5.6 (Sa3), 6.1 (Sa), 6.6 (T1), 8.7 (Ba), and 9.2 (A). Our analysis of the stabilizing forces suggests that the hydrophobic effect contributes from 90 to 110 kcal/mol and that hydrogen bonding contributes from 70 to 105 kcal/mol to the stability of these ribonucleases. Thus, we think that the hydrophobic effect and hydrogen bonding make large but comparable contributions to the conformational stability of these proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure reveals two alternative conformations in the active site of ribonuclease Sa2.

Three different strains of Streptomyces aureofaciens produce the homologous ribonucleases Sa, Sa2 and Sa3. The crystal structures of ribonuclease Sa (RNase Sa) and its complexes with mononucleotides have previously been reported at high resolution. Here, the structures of two crystal forms (I and II) of ribonuclease Sa2 (RNase Sa2) are presented at 1.8 and 1.5 A resolution. The structures were ...

متن کامل

Protein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions

Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...

متن کامل

X-ray structure of two crystalline forms of a streptomycete ribonuclease with cytotoxic activity.

Ribonuclease (RNase) Sa3 is secreted by the Gram-positive bacterium Streptomyces aureofaciens. The enzyme catalyzes the cleavage of RNA on the 3' side of guanosine residues. Here, x-ray diffraction analysis was used to determine the three-dimensional structure of two distinct crystalline forms of RNase Sa3 to a resolution of 2.0 and 1.7 A. These two structures are similar to each other as well ...

متن کامل

Kinetic and thermodynamic analysis of the conformational folding process of SS-reduced bovine pancreatic ribonuclease A using a selenoxide reagent with high oxidizing ability

Redox-coupled folding pathways of bovine pancreatic ribonuclease A (RNase A) with four intramolecular disulfide (SS) bonds comprise three phases: (I) SS formation to generate partially oxidized intermediate ensembles with no rigid folded structure; (II) SS rearrangement from the three SS intermediate ensemble (3S) to the des intermediates having three native SS linkages; (III) final oxidation o...

متن کامل

Contribution of hydrophobic interactions to protein stability.

Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular biology

دوره 279 1  شماره 

صفحات  -

تاریخ انتشار 1998